PainRelief.com Interview with:
Sandip Biswal MD
Associate Professor of Radiology
Co-Section Chief, Musculoskeletal Imaging
Director, Musculoskeletal Imaging Fellowship
Member, Molecular Imaging Program at Stanford (MIPS) and Bio-X
Department of Radiology
Stanford University School of Medicine
PainRelief.com: What is the background for this study?
Response: Our ability to manage patients with chronic pain remains woefully inadequate. Chronic pain patients are faced with limited resources and inadequate care, and as a result, they make up the #1 disease group in the world—numbering more than heart disease, diabetes and cancer combined. Those suffering from low back pain, headache, fibromyalgia, arthritis and many other pain syndromes make up this ever-growing population. A big part of our inability to care for chronic pain patients is due to the fact that our current imaging methods for correctly identifying pain generators remain substantially inaccurate. Our ability to accurately identify the cause of a person’s pain, discomfort, inflammation or other related musculoskeletal symptom(s) using current clinical imaging approaches, such as magnetic resonance imaging (MRI), computed tomography (CT), digital radiography (x-ray) and ultrasound, is quite limited, lacks sensitivity/specificity and can even misguide treatment. As a musculoskeletal radiologist, I witness these shortcomings on a daily basis. I, for example, see firsthand how the lack of reliable diagnostic tools leads to significant misdiagnosis, mismanagement, incorrect use of opioids, unhelpful surgeries and, ultimately, therapeutic failures. We need a much better way to diagnose pain generators.
Accordingly, our group has been developing new clinical imaging methods that pinpoint the site of pain generation using imaging probes—more specifically, positron-emission tomography (PET) tracers that specifically target “pain receptors” or “pain molecules.” These pain receptors or pain molecules are present in abundance at the site of pain generation. After injecting one of these imaging probes into a patient through the vein, we give the probe a few minutes to circulate around the body and stick to areas that have a high density of pain receptors. We can then take a picture of the patient with a special camera that will show “hot spots” on the image that signify the location of high number of pain receptors, thereby highlighting “painful” pro-inflammatory and/or pro-nociceptive tissues. With this approach, doctors and patients have information with which they can make more objective decisions about the diagnosis and treatment of one’s pain.